reaches a maximum of 0.3%. The points for the present data shown in the figure represent two different runs; it is, consequently, difficult to ascribe these differences to temperature gradients between the sample and the thermocouple. There is, therefore, no apparent explanation; nevertheless, the differences diminish to approximately 0.15% in the range of 500° to $573^{\circ} \mathrm{K}$ and a line through the present data gives a slope corresponding to that of previous data above $500^{\circ} \mathrm{K}$. It may then be assumed that no serious errors exist in the present data above $573^{\circ} \mathrm{K}$.

3.2. Internal consistency of data

As indicated in table 2, the data obtained provide several means of computing c_{22}, c_{55} and c_{66}. The curves obtained using the different equations of table 2 are compared in fig. 2, where the values of the three moduli, normalized to the $298^{\circ} \mathrm{K}$ values, are plotted over the range from 298° to $923^{\circ} \mathrm{K}$. For c_{55}, the values computed directly from the crystal A data are in exceptionally good agreement with those computed
from eq. c_{55} (4) between 298° and $600^{\circ} \mathrm{K}$. The latter equation gives c_{55} up to $750^{\circ} \mathrm{K}$ and the c_{55} (1) data are again available above $825^{\circ} \mathrm{K}$. The curve drawn through these two sets of c_{55} values and the c_{55} values below $298^{\circ} \mathrm{K}$, given in ${ }^{2}$), has two linear parts, one extending from 250° to about $425^{\circ} \mathrm{K}$ and the other between 450° to $923^{\circ} \mathrm{K}$ with a relatively sharp curvature between 425° and $450^{\circ} \mathrm{K}$. The c_{55} values from crystal C and eq. c_{55} (3), however, deviate positively from this curve by a maximum of 0.8% at $450^{\circ} \mathrm{K}$ and give slightly lower values in the 800° to $900^{\circ} \mathrm{K}$ range. Although the deviations are relatively minor, a curve constructed using the latter two sets of data would not blend into the low temperature data using a linear plot and would indicate a positive curvature in the 700° to $800^{\circ} \mathrm{K}$ range.
For c_{66}, the few data points obtained from crystal B and the values from eq. c_{66} (3) blend in smoothly with the low temperature measurements and are in remarkably good agreement with the eq. c_{66} (2) points up to $740^{\circ} \mathrm{K}$. Furthermore, by assuming a smooth curve for the

Fig. 2. Comparison of the normalized modulus values for c_{22}, c_{66} and c_{55} as evaluated from different sets of data using equations given in table 2.

